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ABSTRACT 

Two closely related results are presented, one of them concerned with the 
connection between topological and measure-theoretic properties of compact 
spaces, the other being a non-separable analogue of a result of Pe~czyfiski's 
about Banach spaces containing L ~. Let ~- be a regular cardinal satisfying the 
hypothesis that K~< z whenever K < r. The following are proved: 1) A 
compact space T carries a Radon measure which is homogeneous of type r, if 
and only if there exists a continuous surjection of T onto [0, 1]'. 2) A Banach 
space X has a subspace isomorphic to ll(r) if and only if X* has a subspace 
isomorphic to L 1({0, 1}'). An example is given to show that a more recent result 
of Rosenthal's about Banach spaces containing I' does not have an obvious 
transfinite analogue. A second example (answering a question of Rosenthal's) 
shows that there is a Banach space X which contains no copy of/1(o~1), while the 
unit ball of X* is not weakly* sequentially compact. 

1. Preliminaries 

Cardinal  number s  K, r . . .  will be  identif ied with the cor responding  initial  

ordinals  (so that K = {a : a is an ordinal  and  a < K}). The  cofinality cf(K) of K is 

by defini t ion the smallest  cardinal  h for which there exists a family ( ~ ) ~ < ,  with 

r0 < ~, supo K~ = r.  The  cardinal  K is regular if cf(K) = K. W h e n  the no ta t ion  K" 

is used, it will be  cardinal  (not ordinal)  exponen t i a t ion  that is in tended .  The  first 

infinite cardinal  will of course be deno ted  by w, and  the cardinal  of a set A 

by [ A [ .  

The  Banach  spaces cons idered  will all be over the reals as scalar field. Thus  

C(T) will deno te  the space of all con t inuous  real -valued funct ions  on the 

compact  (Hausdorff)  space T, and  the dual  C(T)* will as usual  be identif ied with 

the space M(T) of all R a d o n  measures  on T. If ~p : S ~ T is con t inuous ,  ~po will 

be  the induced  map C(T)--~ C(S), q~O(g)= g oq~, and  I shall write ~ for the 

t ranspose (q~o),. For  a measure  /z E M(S) ,  ff/z is the usual  image measure  

defined by 

= 
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When IX is a measure, it will be convenient to distinguish the space ~l( /x)  

(consisting of all Ix-integrable functions) from L 1(Ix) (the quotient of 5fl(Ix) by 

the null-functions). For f E ~ ( t z ) ,  I denote by f" the corresponding element of 
L1(Ix). 

If A is any set, II(A) is the Banach space of all real valued functions x on A 

for which [[ x [[1- Ea~a [ x(a) l  is finite. I shall write D for the two-point set {0, 1} 

and ha for the usual product measure on the product space D A. The index set A 

will very often be a cardinal. According to the Maharam decomposition 

theorem, any finite measure Ix can be expressed as a sum 

1=1 

where the vj are disjoint, and each vj is homogeneous. For a full exposition of 

this theory, see, for instance, w of [7]; suffice it to note here that when K is an 

infinite cardinal a measure v is homogeneous (of type K) if and only if L ' (u )  is 

isometric to L'(A~). 

If T is a compact space, then by 19.7.6 of [9] T carries an atomless measure if 

and only if T has a nonempty perfect subset, or, equivalently, if and only if there 

exists a continuous surjection T ~  [0, 1]. One of the aims of this paper is to 

obtain more information about the types of the measures carried by T in terms 

of the existence of continuous surjections from T onto products [0, 1] a. Since 

every atomless measure on a compact metric space is of type to, it is with 

non-metrizable spaces that we shall be concerned. 

The other aim is to give a non-separable analogue of the theorem of 

Pej'czyfiski that a dual Banach space X* has a subspace isomorphic (that is, 

linearly homeomorphic) to L 110, 1] if and only if X has a subspace isomorphic to 

P. The obvious nonseparable spaces to look at in this connection are L ;(h~) and 

P(z), where ~- is an uncountable cardinal. 

The notion of an independent family of pairs of sets, introduced by Rosenthal 

in his work on Banach spaces which contain 11 [8], turns out to be critically 

important in both the contexts considered here. A family (A o, A ~),,~,~ of pairs of 

sets will be called independent if 
(i) for each a A ~  

(ii) for every finite subset M of ~ and every map e : M ~  {0, 1} 

a~M 

The importance of such families here depends on the following two lemmas. 
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1.1 LZMMA. For a compact space T, and an infinite cardinal z, the following 

are equivalent: 

(a) there is an independent family (A o, A ~)~ ~ consisting of closed subsets of T; 

(b) there is a closed subset S of T and a continuous sur]ection q~ : S ---> {0, 1}" ; 

(c) there is a continuous sur]ection r : T ~ [0, 1]'. 

1.2 LEMMA. Let S be a set and ( x ~ ) ~  be a uniformly bounded family of 

real-valued functions on S. If, for some real r, 6 with 6 > O, the sets 

A ~  {s @ S :x , , ( s )=  > r + 6}, 

AL = {s ~ S : xo(s)< r} 

form an independent family, then ( x o ) ~  is equivalent to the usual (transfinite) 

basis of 11(O'). 

PROOF. This is proposition 4 of [7]. 

The technique for finding independent families will depend on a combinatorial 

principle of Erd6s and Rado (and it is here that the restriction on the cardinal z 

comes in). Recall that a family of sets ( E ~ ) ~ ,  is said to be quasidisjoint (or to be 

a A-system) if E~ n E .  = whenever a,/3 E o- and a # / 3 .  

1.3 LEMMA. Let r be a regular cardinal with the property that K ~ < r whenever 

K < r, and let (E~)~ET be a family of countable sets. Then there is a subset cr of r 

with [cr I = r, such that ( E~ )~E~ is quasidisjoint. 

PROOF. See theorem I of [1] or the appendix of [5]. 

The smallest cardinal r for which the hypotheses of 1.3 are satisfied is the 

successor of the continuum r = (2~) +. Subject to the generalized continuum 

hypothesis, they are satisfied for a successor cardinal ~-= K § if and only if 

cf(K) > co. The idea of using a combinatorial result like 1.3 in the present context 

was suggested by Hagler's work on dyadic spaces. 

I should like to thank Professor Hagler for making available preprints of his 

papers [2] and [3]. My thanks are also due to the referee for some valuable 

suggestions, especially for the easy proof of 2.1. 

2. The main results 

First let us notice that in each of the theorems to be proved the implication in 

one direction is valid without special assumptions on cardinality. The arguments 

used in the next two propositions should be familiar. 
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2.1 PROPOSITION. Let R, T be compact spaces and ~ : T--* R be a co~tinuous 

sur]ection. For each A E M+(R ) there is a v E M+(T) with ~v = A and such that 

L ~(v) is isometric to LX(A). 

PROOF. Let A denote {# E M+(T):~/.~ = A}. Then A is a nonempty, 

weakly* compact, convex subset of M ( T ) .  The map ~o: LI(v)__,LI(A)  is an 

isometric embedding for any v E A. We shall show that it is surjective provided 

v is an extreme point of A. Suppose then that ~~ L~(v); there exists a 

nonzero element g of ball L l(v) with f (~  of). g dv = 0 for all f E L I(A). It follows 

from this equality that ~((1 + g) .  v) -- ~((1 - g) .  v) -- A. Also, since I g I --< 1, 

both of (1 • g) .  v are nonnegative measures, and are hence in A. The expression 

v--  �89247 g) .  v + ( 1 -  g) .  v] tells us that v is not extreme in A. 

2.2 PROPOSITION. Let X be a Banach space which has a subspace isomorphic 

to P(r). Then X *  has a subspace isomorphic to LI(A~). 

PROOF. Since the density character of L~(A~) is r, there is an embedding 

E:LI(A~)-->I~(r)  = P(r)*. If J : P ( r ) - * X  is an embedding, lemma 2 of [4] 

allows us to "lift" E to an embedding F :  L~(A~)--~X * with J ' F =  E. 

We come now to the main technical result. When B is a subset of A let us 

agree to write ~'B for the projection map DA-* D a. 

2.3 PROPOSITION. Let r be a regular cardinal with the property that r ~ < 7 

whenever r < r, let A be a set, and let ( f~)~,  be a family of elements of L| ) 

with 

Ill'lion1,/If -611,-> >0 

Then there exist a subset tr of ~" with I cr I = r, and real numbers r, ~ with ~ > O, such 

that the sets 

A ~  {z : f~ (z)--2 r + ~}, 

A ~ =  {z : f ~ ( z ) =  < r} 

form an independent family, in the strong sense that 

whenever M is a finite subset of o-, and e ~ D ~. 

PROOF. There exist countable subsets E ( a )  (a E r) of A such that f~" = 

(go o ~'E(~))', for suitable g~ ~ ~f~(A~(~)). Applying the result of ErdSs and Rado, 
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quoted  here  as 1.3, we get a quasidis joint  subfamily  (E(a))o~, with [ oh ] = z. Le t  

the c o m m o n  intersect ion of this subfamily  be  E, and deno te  by ge the condi t ional  

expec ta t ion  pro jec t ion  f rom L ~(AA) on to  L ~(Ae). 

Since c f ( r )  = r > 2  ~ = I L~(AE)J, there  is a subset  0"2 of O'l, with Io-21 = s u c h  

that  ~.f2 is the same  e l emen t  h" of L '(AE) for  all a E o-2. W e  can also a s sume  that  

t lF,-(h~ fo ra l l  a E o - 2 .  

It follows that  for  each ot E o-z there  is a non-null  compac t  subset  K~ of D E such 

that  

f t go(w, z)h(z) l  dXe~o>,e(w)-> ~/2 
for  all z E K~. 

Since g~( . ,  z ) E  ~t(hE~,)~e) and 

f g~(w, z)da e~o)\E(w) (z) h 

for  a lmost  all z E D e, we can assume that  K ,  is chosen so that  this equal i ty  holds 

for  all z E Ko. 

It follows that  the following subsets  of D Et~)xE are non-null  for  all z E K~: 

S~ = {w : g,(w,z)>= h(z)+ e/4}, 

S~(z ) = {w : g~(w, z ) <= h(z ) -  e/4}. 

Using the fact that  there  are only 2 ~ compac t  subsets  of D e, we can now take  a 

subset  o- of o2 with [o-] - z, such that  K~ is the same  subset  K of D E for  all 

a E o-. Finally, let the real n u m b e r  r be  chosen so that  

h ( z ) -  e/4<- r <= h(z) 

for  all z in some non-null  subset  L of K. 

We  now have,  by Fubini ' s  t heo rem,  that  when M is a finite subset  of o" and 
e E D M, 

h" ( ~ M  A:~ ' )  >-- ~L [~M Ae~"E(S~/~)(z))] dAE(z," 

Since the in tegrand is eve rywhere  nonze ro  on the non-null  set L, this integral  is 

nonzero ,  as required.  

2.4 THEOREM. L'et r be a regular cardinal with the property that K ' <  z 
whenever K < ~, and let T be a compact space. Then T carries a measure which is 
homogeneous of type z if and only if there exists a continuous surjection from T 
onto [0, 1] ~. 
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PROOF. By virtue of 1.1 and 2.1, it will be enough to prove, under the 

assumption that T carries a homogeneous measure/x of type z, that T contains 

an independent system ( A ~  of closed sets, with It r I= r. 

Let qb : L l ( / z ) ~  LI(A~) be an isometry (which we can assume to be positive, 

and isometric also from L~(/z) to L~(A,)). Denote by e,, the function e~(z)= 

1 -  2z,, (z E D ' ) .  Then tle~'ll| = 1 and Ile~-e/~tt, = 1 (o~13). 

For each a there is a function g,~ in C(T)  with II go = 1 and 

[[ qbg~" - e~" I[, < 1/4. 

So the elements f~ = ~g~ of L| satisfy the hypotheses of 2.3. 

If we obtain o', r, 8 as before and put 

B ~  B ~ = { t E T : g ~ ( t ) < = r }  ( a ~ t r ) ,  

the sets B ~ B~ are closed in T and 

whenever M is a finite subset of o, and e E D " .  

2.5 REMARKS. Consider the following properties of a compact space T and 

an infinite cardinal z: 

(i) there is a continuous surjection from T onto [0, 1]~; 

(ii) C(T)  has a subspace isometric to l~(~-); 

(iii) C(T)  has a subspace isomorphic to l~(r); 

(iv) C(T)* has a subspace isomorphic to L~(A~); 

(v) C(T)* has a subspace isometric to L~(A,); 

(vi) T carries a homogeneous measure of type at least r ;  

(vii) T carries a homogeneous measure of type exactly z. 

The following implications, and to the best of my knowledge no others, are 

known to hold without restrictions on the cardinal ~': 

(i) r (ii) f f  (iii) f f  (iv) r (v) r (vi) f f  (vii). 

(For the implication ( i v ) ~  (vi) one uses the Maharam theorem, and an 

argument (due to Lindenstrauss) to be found on page 221 of [7].) All seven 

properties are equivalent if z has the property of 1.3, since the proof of Theorem 

2.4 does in fact show that (vi) implies (i). 

2.6 THEOREM. Let r be a regular cardinal with the property that K~< r 

whenever K < r, and let X be a Banach space. Then X has a subspace isomorphic 

to l~(r) if and only if X* has a subspace isomorphic to L~(A~). 
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PROOF. The implication in one direction is 2.2. So let us suppose that 

E : L ~(A~)-~ X is an isomorphic embedding. If we write T for the compact space 

ball X*, under the weak* topology, and I for the natural embedding X--> C(T),  

we can, using lemma 2 of [4] again, "lift" E to an embedding 

F:LI(A, ) - -~C(T)  *, with I ' F =  E. So, by (iv)C:> (vi) of 2.5, T carries a 

homogeneous measure /x of type at least z. 

By the Stone-Weierstrass theorem, the closed sublattice of C(T) generated by 

IX  is exactly 

Co(T) = {f E C(T) :  f(O) = 0}. 

If J~ : C(T)--* Ll(Iz) is the natural mapping, 

JICo(T) i sdensein  Ll(tz). 

Thus the sublattice generated by J~IX is dense in Ll(/z), and so the density 

character of JIIX (in L~(/z)) is at least r. Using the fact that cf(~') = T > tO, we 

conclude that there is a family ( x ~ ) ~  in ball X such that 

IlJllX,,-Jtlxoll> e >O (a~  fl). 

Using Proposition 2.3, we know there exist a subset o~ of ~" with t~r I = ~" and a 

real number r such that the sets 

B ~  = {~ ~ T : (~, xo) >= r +  ~/4}, 

B'~= {~ E T:(~,x~)<= r} 

form an independent family (B ~ B ~ ) ~ .  By Proposition 1.2, the family (x~)~,~,, 

is equivalent to the usual basis of l'(~r). 

REMARK. As far as I am aware, it is another open question whether the 

conclusion of 2.6 is valid without the restrictions on the cardinal r 

3. Two examples 

Rosenthal showed in [8] that an infinite bounded subset of a Banach space 

contains either a weak Cauchy sequence or a sequence which is equivalent to the 

usual basis of l ~. It would be desirable to have a criterion of a similar kind which 

would enable us, under suitable conditions, to obtain embeddings of l~(~') spaces. 

The first example exhibited in this section will show that we should not hope for 

too much in this direction. 

3.1 THEOREM. There exist a Banach space X and an uncountable subset F of 
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X such that F contains no weak Cauchy sequence, while X* has no subspace 

isomorphic to L ~(A,~,) (so that X certainly does not have a subspace isomorphic to 

l'(,o,)). 

Hagler  has recently shown this to be true, using an example of " James '  t ree"  

type [3]. The author  hopes there may still be some interest in the following 

construction, which shows that X may be chosen to be C(S) for a suitable 

compact  and totally disconnected space S. The set F will consist of the indicator 

functions of a family (U , , ) . ~ ,  of open and closed subsets of S. We shall have to 

prove that there is no infinite sequence (a(n)) such that lv.,., converges 

pointwise on S, and that S does not carry a measure of uncountable type. 

3.2 CONSTRUCnON. Let us fix an injection a ~ t. of the set to, into R. Let S 

be the subset of D ~' consisting of all x = (xo) such that for no a,/3, y < to, do we 

have 

a < ~ < y ,  

to > t~ < t .  

x o = 0 ,  x ~ = l ,  x ~ = 0 .  

Define U,, = {x E S" x,, = 1} (so that lu.  is the coordinate function f , (x )  = xo). 

3.3 LEMMA. If  (a(n )) is a strictly increasing sequence of ordinals in to~ and the 
sequence (to(.)) is monotonic in R, then the sequence of functions (f~t.)) is 
independent (equivalently, the sequence (U,(.), S\ U~(,)) is independent). 

Given a sequence e = (e(n)) in D ", we shall show that there exists PROOF. 

x E S with 

xo .) = e ( n )  (n to). 

Assume first that (t~,)) is increasing. We define x~(,)= e (n )  (n ~ to); 

x~ = 1, if a < a(0),  or, for some n, a ( n ) <  a < a(n + 1) and ta~.)< t,,; 

x,, = 0 ,  if a => s u p , , a ( m )  or, for some n, a ( n ) < a < a ( n + l )  and t ~ . ) >  t,~. 

We find that xis in S since, in fact, t~ < ta whenever a </3, x,, = 0 and x~ = 1. 

If (t,,~.)) is decreasing, we define 

x~.> = e (n) ;  

x,~ = 0, if a < a(0),  or, for some n, a ( n ) <  a(n + 1) and t~ < t~r 

x,, = 1, if a -> supma(m),  or, for o~(n)< a < a ( n  + 1) and t,, > t.(,+l>. 

3.4 PROPOSmON. The subset F = { L : a  < to,} of C(S) contains no weak 

Cauchy sequence. 
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PROOF. Given any infinite subset M of to~, we can find a strictly increasing 

sequence (c~(n)) in M such that (to~,)) is monotonic. Thus every sequence in F 

has an independent subsequence, and F has no weak Cauchy sequence. 

To show that there is no measure on S of uncountable type, we employ two 

further lemmas. 

3.5 LEMMA. Let Y be a compact metric space, and Z be a compact, totally 

ordered space. Then every atomless measure on Y • Z is of type to. 

PROOF. Let/~ be an atomless probability measure on Y • Z and let v be the 

marginal probability on Z, t ,(B) = / z ( Y  • B). We need only consider the case 

where t, is also atomless. For each rational q in (0, 1), choose zq E Z such that 

v({z ~ Z : z  < z~}) : q. 

If (B,)  is a countable base for the topology of Y, define, for each triple 

(n ,q , r )  with n E t o ,  q , r ~ Q O ( 0 , 1 )  and q < r ,  the rectangle R ( n , q , r ) =  

B. • {z E Z : zq < z < zr}. Then the set of indicator functions ]-nt,~,q,,) is total in 

L~(g), and this space is thus separable. 

Our last |emma enables us to decribe the subsets of our space S which are 

supports of measures. Recall that a space T has the countable chain condition 

(CCC) if every disjoint collection of nonempty open subsets of T is countable. 

The support of a measure necessarily has the CCC. 

3.5 LEMMA. Let T be a subset of S, and suppose that T has the CCC. Then T is 

homeomorphic to a subset of Y • Z for a suitable compact metric Y and compact, 

totally ordered Z. 

PROOF. I assert that there is an ordinal f < toj such that, for a,/3 => i and 

x ~ T ,  

x o = 0 ,  x 0 = l  imply t , < t 0 .  

Suppose the contrary; we construct open sets Ve ((: < to1) as follows. 

Take i ( 0 )  = 0. If i ( s  e) < to1 has been defined, choose o~,/3 > i ( ~ )  and x @ T 

such that x. = 0, x0 = 1, and t~ > t0. 

Put V, = {y E T : y .  = 0, ye = 1} and let I, be the interval (t~, to) in R. To 

complete the inductive definition, we must choose i ( ~ +  1) with a,/3 < 

f ( ~  + 1) < to1, and put i f ( r / )  = s u p { i ( ~ )  : ~ < 7} when ~/ is a limit ordinal. 

It is straightforward to check, from the above construction and the definition 

of S, that V~ N V, = ~ whenever I~ n I , #  ~ .  Now there is an uncountable 

subset o" C to1 and a rational q such that all the open intervals I, (~: E o-) contain 
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q. So { V~ : ~ E o'} is an uncountable disjoint collection of nonempty open subsets 

of T, contradicting the CCC. 

We now take 3- to have the property stated above and define Y = D  3, 

Z = {z ~ D~'\~: to < tr whenever za = 0, z~ = 1}. Then T is homeomorphic  to a 

subset of Y x Z, and Y is certainly metrizable (since 3- is countable). Moreover,  

Z can be identified with the set of all increasing {0, 1}-valued functions on the 

subset {t, : 3- -< a < co,} of R, and it is, therefore, totally ordered. 

The proof that the space S has the stated properties is now complete. The 

second example uses a construction explained to me by D. H. Fremlin. It is again 

concerned with a conjecture about the existence of 11(~0~) subspaces. Rosenthal 

has asked: "If  there is a bounded sequence in X* with no weakly* convergent 

subsequence, need X have a subspace which is (a) isomorphic to U; (b) 

isomorphic to l~(~o~)? ' ' 

I shall show that the answer to question (b) is in the negative, and the 

counterexample will once more be a space of the type C(S). As far as I am 

aware, question (a) is still unanswered, but it is rather easy to see that the answer 

is "yes"  in the special case of C(S)-spaces. 

3.7 THEOREM. There is a compact space T which is not sequentially compact, 

but which carries no measure of uncountable type. 

PROOF. Let ~ be a family of subsets of N, maximal with respect to the 

condition that for R , R ' E  ~ at least one of the sets R \ R ' ,  R ' \R,  R n R'  is 

finite. (That is to say, of R and R ', either one "almost contains" the other, or the 

two are "almost disjoint".) Evidently ~ contains all the finite subsets of N. We 

take T to be the compactification of N determined by ~.  We may view T either 

as the quotient space o f /3N by the appropriate equivalence relation, or as the 

closure of ~ N  in {0, 1} 8 where qb :N--~ {0, 1} 8 is the injection given by qb(n)= 

(1R(n))R~. Either way, we can identify N with a dense open subset of T. For 

R E ~,  the closure/~ of R in T is open and closed in T, and the sets of this form, 

together with their complements, make up a subbase for the topology of T. 

3.8 LEMMA. NO subsequence of N converges, in T. 

PROOF. It is enough to show that for any infinite subset M of N there is a set 

R E ~ with M O R and M \ R  both infinite. We first choose a subset N of M 

such that N and M \ N  are both infinite. If N E ~,  we are finished; if not, the 

maximality of ~ tells us that there exists R E ~ such that N n R and N \ R  are 

both infinite. 

We now suppose, if possible, that /z is a homogeneous measure on T, of 
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uncountable type. Let S be the s~Jpport of/x (so that S has the CCC) and let fie 

be the set of all non-empty intersections S N/~ with R ~ ~.  If A, A '  E fie, then 

either A C _ A '  or A ' C A  or A A A ' = Q .  Moreover,  if A , A ' ~  and 

A \ A ' ~ Q  then t z ( A \ A ' ) ~ O  (since S = supp/x, and A \ A '  is open in S). 

3.9 LEMMA. Let ~ be a maximal disjoint subset of fie. Then the set ~* = 

{A ~ fie" A D_ D for some D ~ @} is countable. 

PROOF. I assert first that a set A E ~*  is uniquely determined by ~A = 

{D ~ ~ : D C_ A }. For suppose the sets A, A '  ~ ~* satisfy ~,~ = ~A,, A '  C_ A. 

Put X = A \A '  and ~- = {B ~ 5e : A '  C B C A }. It follows from maximality of 

the set @ that if C E fie and C n X is a proper  nonempty subset of X then 

C E J-. (For, if not, that is to say, if C does not contain A' ,  we have C N A '  = O 

and C C_ A, which together imply that C n D = ~ for all D E 5~.) Thus the sets 

B \ A  ', A \ B  (B E 9-) form a subbase for the topology of X, and this topology is 

induced by a total order (x =< y if x E B whenever y E B ~ 3-). It follows that X 

must be null for any homogeneous measure of uncountable type. As we 

remarked earlier, /x (A \A' )  = 0 implies A \A '  = ~ .  

It is now enough to prove that there are only countably many subsets of ~ of 

the form @A. This is easy when we note, firstly, that ~ is countable (by the CCC) 

and, secondly, that for a pair @A~A', either @A C_ @A,, or ~A,C ~A or 

~A N ~A, = Q. 

We can now complete the proof of 3.7. For each n, let 9 ,  be a maximal 

disjoint subset of fie, with the property that /z  (D)=< 1/n for all D E ~..  (It is not 

hard to see that such ~ .  exist.) If A E fie and A ~  ~*, then A C D for some 

D E ~,, so that t.~(A)<-l/n. Since p , ( A ) > 0  for all A @ fie, we have fie= 

U(=~ ~ * ,  and thus see that fie is countable. It follows from this that S is 

metrizable and that S cannot, therefore, carry a measure of uncountable type. 
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